A phantom with tissue-like optical properties in the visible and near infrared for use in photomedicine.

نویسندگان

  • M Lualdi
  • A Colombo
  • B Farina
  • S Tomatis
  • R Marchesini
چکیده

BACKGROUND AND OBJECTIVE Modeling of light transport in tissue requires development of theoretical models and experimental procedures, as well as tissue-simulating phantoms. Our purpose was to develop a phantom that matches the optical characteristics of human skin in the visible and near infrared spectral range. STUDY DESIGN/MATERIALS AND METHODS The phantom consists of a transparent silicone rubber in which Al(2)O(3) particles and a cosmetic powder are embedded. Layers with thickness as thin as 0.1 mm can be made. The optical properties of Al(2)O(3) particles and cosmetic powder, i.e., total attenuation, absorption and scattering coefficients, and phase function, have been determined in the visible and near infrared spectral range, by using direct and indirect techniques. RESULTS By varying the concentration of scattering and absorbing particles, tissue-like layers can be produced with predictable optical properties. In particular, mixing at suitable concentration Al(2)O(3) particles and cosmetic powder with the silicone rubber, the optical properties of human skin have been simulated over a range of wavelengths from 400 to 1,000 nm. The comparison between the phantom diffuse reflectance spectrum and that of human skin, averaged over a sample of 260 patients, showed a good agreement. CONCLUSION The proposed technique allows to produce a stable and reproducible phantom, with accurately predictable optical properties, easy to make and to handle. This phantom is a useful tool for numerous applications involving light interaction with biologic tissue.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ساخت و ویژگی‌یابی نانوپوسته های طلا برای کاربردهای پزشکی

Gold nanoshells are a new type of nanoparticles including dielectric cores with a continuous thin layer of gold. By varying the core diameter, shell thickness, and the ratio of these parameters, the optical properties of gold nanoshells can be tuned to have maximum absorption in the visible and near infrared spectrum range. The purpose of this research was to synthesize gold coated SiO2 nanos...

متن کامل

Quantitative Comparison of Analytical solution and Finite Element Method for investigation of Near-Infrared Light Propagation in Brain Tissue Model

Introduction: Functional Near-Infrared Spectroscopy (fNIRS) is an imaging method in which light source and detector are installed on the head; consequently, re-emission of light from human skin contains information about cerebral hemodynamic alteration. The spatial probability distribution profile of photons penetrating tissue at a source spot, scattering into the tissue, and being released at ...

متن کامل

Induction of Localized Hyperthermia by Millisecond Laser Pulses in the Presence of Gold-Gold Sulphide Nanoparticles in a Phantom

Introduction Application of near-infrared absorbing nanostructures can induce hyperthermia, in addition to providing more efficient  photothermal effects. Gold-gold sulfide (GGS) is considered as one of these nanostructures. This study was performed on a tissue-equivalent optical-thermal phantom to determine the temperature profile in the presence and absence of GGS and millisecond pulses of a ...

متن کامل

Effects of Temperature on Radiative Properties of Nanoscale Multilayer with Coherent Formulation in Visible Wavelengths

During the past two decades, there have been tremendous developments in near-field imaging and local probing techniques. Examples are the Scanning Tunneling Microscope (STM), Atomic Force Microscope (AFM), Near-field Scanning Optical Microscope (NSOM), Photon Scanning Tunneling Microscope (PSTM), and Scanning Thermal Microscope (SThM).Results showed that the average reflectance for a dopant con...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Lasers in surgery and medicine

دوره 28 3  شماره 

صفحات  -

تاریخ انتشار 2001